Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient

نویسندگان

  • Xiang Ren
  • Fuyou Wang
  • Cheng Chen
  • Xiaoyuan Gong
  • Li Yin
  • Liu Yang
چکیده

BACKGROUND Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). METHODS In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. RESULTS We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. CONCLUSIONS Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.

Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limit...

متن کامل

Design and Fabrication of Anatomical Bioreactor Systems Containing Alginate Scaffolds for Cartilage Tissue Engineering

The aim of the present study was to develop a tissue-engineering approach through alginate gel molding to mimic cartilage tissue in a three-dimensional culture system. The perfusion biomimetic bioreactor was designed to mimic natural joint. The shear stresses exerting on the bioreactor chamber were calculated by Computational Fluid Dynamic (CFD). Several alginate/bovine chondrocyte constructs w...

متن کامل

Effects of auricular chondrocyte expansion on neocartilage formation in photocrosslinked hyaluronic acid networks.

The overall objective of this study was to examine the effects of in vitro expansion on neocartilage formation by auricular chondrocytes photoencapsulated in a hyaluronic acid (HA) hydrogel as a next step toward the clinical application of tissue engineering therapies for treatment of damaged cartilage. Swine auricular chondrocytes were encapsulated either directly after isolation (p = 0), or a...

متن کامل

Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo

Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human cho...

متن کامل

Interstitial Flow Produces a Superficial Zone-Like Layer in Tissue Engineered Cartilage

INTRODUCTION: Surgical repair of articular cartilage typically yields fibrocartilage that lacks the stratified ECM architecture of native cartilage and does not integrate with the surrounding hyaline cartilage. Because of these limitations, there has been considerable interest in cartilage tissue engineering and that led to the development of various bioreactor systems to grow functional engine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016